CHEMISCHE BERICHTE

FORTSETZUNG DER BERICHTE DER DEUTSCHEN CHEMISCHEN GESELLSCHAFT

HERAUSGEGEBEN VON DER GESELLSCHAFT DEUTSCHER CHEMIKER

115. JAHRGANG · HEFT 12 · SEITE 3687 – 3908

Dieses Heft wurde am 3. Dezember 1982 ausgegeben.

Darstellung von Enolsulfonsäureestern aus Trimethylsilylenolethern – Synthetische Konsequenz eines bemerkenswerten Kationeneffekts

Elisabeth Hirsch, Siegfried Hünig * und Hans-Ulrich Reißig

Institut für Organische Chemie der Universität Würzburg, Am Hubland, D-8700 Würzburg

Eingegangen am 15. März 1982

Die C/O-Selektivität der Sulfonylierung des Enolat-Ions 5 mit Benzolsulfonylfluorid zeigt einen starken Einfluß des Gegenions. Während mit Li[⊕] ausschließlich C-Sulfonylierung zum β -Oxosulfon 3 erfolgt, wächst mit der Größe des Kations der Anteil an O-Sulfonylierung, bis mit Cs[⊕] oder quartären Ammonium-Ionen ausschließlich Enolsulfonsäureester **6b** entstehen. Dieses Verhalten wird für eine regio- und stereoselektive Synthese von Enolsulfonsäureestern aus den entsprechenden Trimethylsilyl-enolethern genutzt.

Preparation of Vinylsulfonates from Trimethylsilyl Enol Ethers – Synthetic Consequences of a Remarkable Cation Effect

The C/O-selectivity observed in the sulfonylation of the enolate ion 5 with benzenesulfonyl fluoride depends strongly on the nature of the gegenion. Li^{\oplus} yields the β -oxosulfone 3 by C-sulfonylation exclusively. The fraction of O-sulfonylation is increased with the size of the cation, yielding the vinylsulfonates **6b** exclusively in the presence of Cs^{\oplus} or quaternary ammonium ions. From this behaviour a regio- and stereoselective synthesis of vinylsulfonates is developed starting from the corresponding trimethylsilyl enol ethers.

A. Einführung und Zielsetzung

Aromatische Sulfonsäurechloride können auf Carbanionen oder Ylide prinzipiell den Sulfonylrest oder das Halogen elektrophil übertragen. In der Regel beobachtet man Chlorierung¹⁾, wie sich kürzlich an der Reaktion des Lithium-enolats 5-Li^{\oplus} mit

Chem. Ber. 115, 3687 – 3696 (1982) © Verlag Chemie GmbH, D-6940 Weinheim, 1982 0009 – 2940/82/1212 – 3687 \$ 02.50/0 Benzolsulfonylchlorid (4a) zum Chlorketon 2 bestätigte²⁾ (Schema 1). Nur unter speziellen Bedingungen ist eine Sulfonylierung zu erzielen³⁾. Erst bei Sulfonylfluoriden zwingt die eindeutige Nucleofugie des Fluors den Sulfonylrest in die Rolle des Elektrophils⁴⁾. Beim Einsatz ambidenter Anionen taucht zusätzlich die Frage nach der Selektivität der Sulfonylierung auf, die bisher u. W. noch nicht bearbeitet wurde. Es war daher das Ziel dieser Untersuchung, am Beispiel der präparativ wichtigen Enolate das C/O-Verhältnis der Sulfonylierung zu studieren, da sowohl β -Oxosulfone (z.B. 3)⁵⁾ als auch Vinylsulfonsäureester (z.B. 6b, Schema 1)⁶⁾ als Synthesebausteine steigende Bedeutung gewinnen.

B. Einfluß des Kations M^{\oplus} auf die C/O-Selektivität der Sulfonylierung von Enolaten

Wie kürzlich mitgeteilt²⁾, reagiert das Lithium-enolat 5-Li^{\oplus} mit Benzolsulfonylfluorid (4b) (1:1) ausschließlich zum β -Oxosulfon 3 (40%) (Schema 1). Neben 3 und 4b enthält das Rohprodukt nur noch Pinacolon (1), so daß sich die mäßige Ausbeute durch die Acidität von 3 erklären läßt, das noch vorhandenes 5-Li^{\oplus} protoniert. Da eine direkte Synthese von β -Oxosulfonen aus den Enolaten von Carbonylverbindungen anscheinend noch nicht bekannt ist⁵⁾, wurde versucht, durch überschüssiges Lithiumdiisopropylamid oder -2,2,6,6-tetramethylpiperidid die Ausbeute an 3 zu erhöhen. Das Produkt besteht jedoch nur aus präparativ wertlosen komplexen Gemischen⁷⁾. Dagegen brachte ein Wechsel des Kations die *O*-Sulfonylierung ins Spiel. Das Verhältnis von 3 und 6b im Rohprodukt ist leicht ¹H-NMR-spektroskopisch anhand der Methylenbzw. Vinylprotonen ($\delta = 4.35$ bzw. $\delta = 4.67/4.97$) zu bestimmen.

Tab. 1 zeigt am Beispiel von **5**- M^{\oplus} + **4b** den seltenen Fall eines vollständigen Wechsels der *C/O*-Selektivität. In der Reihe der Alkali-Kationen verschiebt sich mit zunehmender Größe von M^{\oplus} das Produktverhältnis von quantitativer *C*- zu quantitativer *O*-Sulfonylierung (Nr. 1 – 4). Verständlicherweise bewirken quartäre Ammonium-Ionen ebenfalls die ausschließliche Bildung des Vinylsulfonats **6b** (Nr. 5 und 6).

Tab. 1.]	Kationeneinfluß	auf das C/O-Verhältnis 3:6b der	Benzolsulfonylierung des 1,2-Dimethoxyethan (Enolat-Anions 5 mit 4b (Schei DME)	ma 1) in Tetrahydrofuraı	n (THF) oder
Nr.	Edukt für 5	Base bzw. Nucleophil	Solvens	Kation	Rohprodukt 3:6b (Ausbeute %)	Isolierte Ausb. ^{a)} %
-	1	LiN(<i>i</i> -C ₃ H ₇) ₂	THF ^b)	Li⊕	100: 0(-)	40c)
7	1	NaN(SiMe ₃) ₂	THF ^{b)} DME ^{b)}	Na ⊕	61: 39 (88) 63: 37 (63)	45 -
÷	-	КН	DME ^{b)}	K⊕	13: 87 (77)	68
4	6a	CsF	THF ^{d)}	Cs⊕	0:100 (99)	84
S	6a	(C ₆ H ₅ CH ₂)Me ₃ NF	THF ^{d)}	(C ₆ H ₅ CH ₂)Me ₃ N [⊕]	0:100 (96)	06
9	6a	$(n-C_4H_9)_4NF$	THF ^{d)}	$(n-C_4H_9)_4N^{\oplus}$	0:100 (90)	67
٢	-	$LiN(i-C_3H_7)_2$	THF + 3 Äquivalente HMPT ^{b)}	Li⊕	30: 70 (77)	42
ø	1	КН	THF + 3 Äquivalente HMPT ^{b)}	K⊕	5: 95 (89)	74
6	1	КН	THF + 1 Äquivalent 18-Krone-6 ^{b)}	K⊕	7: 93 (70)	I
a) Nach (16 h)	Destillation: Da - c) Nach Umkr	t sich 3 bei der Destillation teilwei: istallisation. – ^{d)} 20°C (16 h).	se zersetzt, sind die gerei	inigten Produktgemische anger	eichert an 6b ^{b)} - 78	8°C → 20°C

Während der Wechsel von Tetrahydrofuran zu 1,2-Dimethoxyethan ohne Folgen bleibt (Nr. 2), erhöhen komplexierende Zustände wie Hexamethylphosphorsäuretriamid (HMPT) (Nr. 7 und 8) oder 18-Krone-6 (Nr. 9) erwartungsgemäß den Vinylsulfonat-Anteil beträchtlich. Es ist aber bemerkenswert, daß sie den Effekt des Cäsium-Ions oder der quartären Ammonium-Ionen nicht erreichen.

Der vorliegende Kationeneffekt bestätigt erneut die Aussage von *Le Noble*⁸), mit der er seine Resultate an Salzen des Acetessigesters zusammengefaßt hat: "The freer the anion, the larger the O/C ratio." Die glatte O-Sulfonylierung zweier Lithium-enolate mit dem Sulfonylammoniumsalz **4e** zeigt, daß – wie zu erwarten – auch die Art ("Härte") des Sulfonylierungsmittels den Angriff am ambidenten Anion stark beeinflußt⁹.

C. Synthese von Enolsulfonsäureestern

Da zur Synthese der Vinylsulfonate ohnehin Sulfonylfluoride eingesetzt werden müssen, sollten anstelle der Metall-enolate auch Trimethylsilyl-enolether 7 nach Gl. (1) reagieren, da die Si – F-Bindung noch um ≈ 250 kJ \cdot mol⁻¹ energieärmer ist als die S – F-Bindung¹⁰⁾. Tatsächlich setzt die Reaktion erst auf Zusatz von Fluorid ein, welches zweifellos – wie in bekannten Beispielen¹¹⁾ – durch Bildung freier Enolat-Ionen und Fluortrimethylsilan (9) einen katalytischen Reaktionscyclus startet. Verwendet man als Katalysator Cäsium- oder quartäres Ammonium-fluorid (10 mol-%, vgl. auch Tab. 1, Nr. 4–6), so entspricht Gl. (1) einer neuen, allgemeinen Methode zur Synthese von Enolsulfonestern 8, demonstriert an den Beispielen 10–18. Die konkurrierende Bildung von β -Oxosulfonen unterbleibt völlig, wie die ¹H-NMR-Spektren der Rohprodukte ausweisen. Die quantitativ entstandenen Ester 8 sind nach Destillation mit Ausbeuten von $\approx 90\%$ zu isolieren (Schema 2).

Statt 4b (und wahrscheinlich anderer aromatischer Sulfonsäurefluoride) läßt sich auch das Nonafluorbutansulfonylfluorid (4c) in Ausbeuten von 60 - 80% zu den entsprechenden Enolestern umsetzen, wie die Beispiele 6c und 14c - 17c zeigen. Allerdings erhält man nur reproduzierbare Ergebnisse, wenn der Katalysator homogen gelöst vorliegt wie das hier eingesetzte Tetra-*n*-butylammonium-fluorid (Schema 2).

Methansulfonylfluorid (4d) setzt sich zwar glatt mit dem Silylenolether des Isobutyraldehyds (14a) zum Sulfonester 14d um, nicht jedoch mit 6a. Hier findet man neben den Edukten und wenig 6d nur Pinacolon (1). Vermutlich deprotoniert das stark basische Enolat 5 das Sulfonylfluorid 4d (Bildung von Sulfen, vgl. Lit.²⁾), wodurch der erwünschte Reaktionscyclus nicht in Gang kommt. 6d ist jedoch aus Methansulfonsäure und *tert*-Butylacetylen gut zugänglich²⁾.

Von besonderer Bedeutung ist, daß die Strukturmerkmale der Silylenolether 7 voll auf die Ester 8 übertragen werden. Das gilt sowohl für die Lage (17 und 18) als auch für die Konfiguration der Doppelbindung (12 und 13)¹²⁾.

D. Vergleich mit anderen Methoden⁶⁾

Die Synthese von Vinylsulfonaten durch Addition von Sulfonsäuren an Acetylene bleibt im wesentlichen auf acyclische Derivate beschränkt^{14,2)}. Dabei treten bei nicht terminaler Dreifachbindung Regioisomere auf.

Die Deprotonierung von Carbonylverbindungen und anschließende Reaktion mit Sulfonsäureanhydriden erfordert den Einsatz sehr spezieller Basen wie 2,6-Di-tert-butyl-4-methylpyridin¹⁵), wenn man nicht niedrige Ausbeuten in Kauf nehmen will¹⁶). Es fallen, wo strukturell möglich, meist Isomerengemische an. Außerdem geht die Hälfte des Sulfonsäurerestes als Abgangsgruppe verloren. Dieser Nachteil wird bei einer Synthese von Nonafluorbutansulfonaten aus Natriumenolaten und dem entsprechenden Sulfonyl*fluorid* vermieden¹⁷). Ob die mäßigen Ausbeuten auf teilweise C-Sulfonylierung zurückzuführen sind, wird nicht beschrieben. Auf der indirekten Darstellung von Lithium-enolaten aus Trimethylsilyl-enolethern mit Methyllithium und anschließender Umsetzung mit Trifluormethansulfonsäureanhydrid¹⁸) beruht eine Methode, die unserer katalysierten Variante am ähnlichsten, allerdings unbequem auszuführen ist.

Die meisten dieser Nachteile werden bei dem in dieser Arbeit vorgestellten Weg vermieden, da er sich auf die hochentwickelten regio- und stereoselektiven Synthesen von Silyl-enolethern¹⁹⁾ stützen kann. Zudem sind aromatische Sulfonylfluoride leicht aus den entsprechenden Säuren oder Chloriden darzustellen²⁰⁾. Nonafluorsulfonylfluorid ist ein technisches Produkt²¹⁾. Da die Nonaflatgruppe sogar noch die Nucleofugie der Triflatgruppe übertrifft, dürfte der vorgestellte Syntheseweg zum weiteren Ausbau der Chemie nicht nur aromatischer sondern gerade dieser fluorierten Vinylsulfonsäureester einen Beitrag leisten²²⁾.

Wir danken dem Fonds der Chemischen Industrie sowie der BASF Aktiengesellschaft, Ludwigshafen, für die Förderung dieses Projektes. Herrn Dr. R. Schliebs, Bayer AG, Leverkusen, sind wir für die Überlassung einer größeren Menge Nonafluorbutansulfonylfluorid zu Dank verpflichtet.

Experimenteller Teil

¹H-NMR-Spektren: Varian T 60 und EM 390, innerer Standard TMS oder $CHCl_3$. – IR-Spektren: Perkin-Elmer 157 G und IR 33. – Massenspektren: Varian MAT CH 7.

Die Lösungsmittel THF und DME wurden unmittelbar vor Gebrauch aus einer Umlaufapparatur von K/Benzophenon abdestilliert. Diisopropylamin und HMPT wurden durch Destillation über Calciumhydrid getrocknet und über Molekularsieb 4 Å aufbewahrt. NaN(SiMe₃)₂, Benzyltrimethylammonium-fluorid, Tetra-*n*-butylammonium-fluorid, Benzolsulfonylfluorid, Methansulfonylfluorid und alle eingesetzten Trimethylsilyl-enolether wurden nach Literaturvorschriften hergestellt. Cäsiumfluorid wurde vor dem Gebrauch 6 h bei 100 °C/0.01 Torr getrocknet. Alle Versuche wurden in ausgeheizten, mehrmals evakuierten und mit trockenem Stickstoff belüfteten Reaktionsgefäßen unter leichtem N₂-Überdruck durchgeführt.

Kationeneinfluß auf das C/O-Verhältnis

Analog zu der in Lit. ²⁾ angegebenen Arbeitsvorschrift für Versuch Nr. 1 wurden unter den in Tab. 1 angegebenen Reaktionsbedingungen die Versuche Nr. 2, 3 und 7–9 durchgeführt (jeweils 10.0 mmol 1). Bei Verwendung von Kaliumhydrid als Base (Nr. 3, 8 und 9) wurde nach Auswaschen des Paraffinöls²³⁾ bei 0°C (10 min) 1 deprotoniert und nach Abkühlen auf – 78°C wie in Nr. 1 verfahren. Komplexierung des Enolat-Anions 5 mit HMPT (Nr. 7 und 8) erfolgte bei – 78°C (30 min), mit 18-Krone-6 (Nr. 9) bei 0°C (30 min). Diese Komplexierungsmittel wurden bei der Aufarbeitung durch dreimaliges Ausschütteln der organischen Phase mit je 10 ml Wasser entfernt. Nach Trocknen und Konzentrieren der organischen Phase wurde in allen Fällen das resultierende Rohprodukt ¹H-NMR-spektroskopisch untersucht, dann durch Kristallisation (Nr. 1) bzw. Destillation weiter gereinigt (Nr. 2–8). In den Versuchen Nr. 4–6 wurde analog zur folgenden allgemeinen Arbeitsvorschrift vorgegangen.

Allgemeine Arbeitsvorschrift zur Darstellung der Benzolsulfonsäure-enolester 6b, 10b – 18b

10.0 mmol Trimethylsilyl-enolether 6a, 10a - 18a und 10.0 mmol Benzolsulfonylfluorid (4b) werden in 10 ml wasserfreiem THF gelöst und im Stickstoffstrom mit 169 mg (1.00 mmol) Benzyltrimethylammonium-fluorid versetzt. Die resultierende blaßgelbe Suspension wird 16 h bei Raumtemp. gerührt. Nach Verdünnen mit *n*-Pentan wird filtriert, mit dem gleichen Solvens nachgewaschen und konzentriert. Die so quantitativ erhaltenen Rohprodukte werden i. Vak. destilliert. Analog wird mit CsF verfahren; Tetra-*n*-butylammonium-fluorid wird als Lösung in THF zugetropft. Ausbeuten finden sich in Schema 2, physikalische und analytische Daten sind in Tab. 2 zusammengestellt.

	Tab. 2. Physikalische un	d charakteristische analy	ytische Daten der Benzolsı	ilfonsäure-enolester (ib, 10b–18b
Nr.	Name -benzolsulfonat	Summenformel (Molmasse) Sdp. °C/Torr ^a)	Elementar- analyse C H S	IR (CCl ₄) cm^{-1} $C = C \langle$	¹ H-NMR (CDCl ₃) δ (ppm) ^{b)}
6b	(1-tert-Butylvinyl)-	C ₁₂ H ₁₆ O ₃ S (240.3) 100/0.02	Ber. 59.98 6.71 13.34 Gef. 60.03 6.42 13.55	1645	4.97 und 4.67 (2d, $J = 4$ Hz, je 1H, $=$ CH ₂), 1.68 (s, 9H, C(CH ₃) ₃)
10b	(1-Methylvinyl)-	C ₉ H ₁₀ O ₃ S (198.2) 80/0.01	Ber. 54.53 5.08 16.17 Gef. 52.58 4.54 15.24	(c) 1655	4.65 (s, 2H, =CH ₂), 1.87 (s, 3H, CH ₃)
11b	(1-Phenylvinyl)-	C ₁₄ H ₁₂ O ₃ S (260.3) ^{d)}	Ber. 64.60 4.65 12.32 Gef. 65.15 4.38 12.34	1640	7.4 (mc, 5H, $C_{6}H_{3}$), 5.35 und 5.05 (2d, $J = 4$ Hz, je 1H, = CH ₂)
12 b und 13 b	(E)- und (Z)-(1-Propenyl)-	C ₉ H ₁₀ O ₃ S (198.2) 80/0.01	Ber. 54.53 5.08 16.17 Gef. 53.82 4.77 16.28	1665	$E (25\%): 6.39 (dq, J_1 = 12 Hz, J_2 = 1.8 Hz, 1H, = CH - O), 5.42 (dq, J_1 = 12 Hz, J_2 = 7 Hz, 1H, = 2 CH - CH_3), 1.53 (dd, J_2 = 1.8 Hz, J_3 = 7 Hz, 3H, CH_3). CH_3). CH_3, 1.8 Hz, 1H, = CH - O), J_2 = 1.8 Hz, 1H, = CH - O), J_2 = 1.8 Hz, 1H, = CH - O), J_2 = 0 (dd, J_1 = 6 Hz, J_3 = 7 Hz, 3H, CH_3), 1.44 (dd, J_2 = 1.8 Hz, J_3 = 7 Hz, 3H, CH_3), CH_3), CH_3), CH_3), CH_3), CH_3)$

		Tal	o. 2 (Fortsetz	(bun			
Nr.	Name -benzolsulfonat	Summenformel (Molmasse) Sdp. °C/Torr ^{a)}		Element analys H	tar- se S	IR (CCl ₄) cm ⁻¹ C = C <	¹ H-NMR (CDCl ₃) δ (ppm) ^{b)}
14b	(2-Methyl-1-propenyl)-	C ₁₀ H ₁₂ O ₃ S (212.3) 90/0.01	Ber. 56. Gef. 56.	59 5.70 45 5.35	15.11 15.18	1680	6.18 (mc, 1H, =CH), 1.55 und 1.43 (2 verbreiterte s, je 3H, 2 CH ₃)
15b	(1-Cyclopenten-1-yl)-	C ₁₁ H ₁₂ O ₃ S (224.3) 120 – 140/ 0.01		C		1655	5.22 (mc, 1H, = CH), 2.6–1.6 (m, 6H, CH ₂)
16b	(1-Cyclohexen-1-yl)-	C ₁₂ H ₁₄ O ₃ S (238.3) 140/0.01	Ber. 60. Gef. 60.	48 5.92 55 5.82	13.45 13.53	1675	5.29 (mc, 1H, =CH), 2.2-1.2 (m, 8H, CH ₂)
17b	(6-Methyl-1-cyclohexen- 1-yl)-	C ₁₃ H ₁₆ O ₃ S (252.3) 140/0.01	Ber. 61. Gef. 61.	88 6.39 57 6.05	12.71 12.96	1670	5.29 (mc, 1H, = CH), 2.5 - 1.0 (m, 7H, CH,, CH), 0.88 (d, $J = 6.5$ Hz, CH ₃)
18b	(2-Methyl-1-cyclohexen- 1-yl)-	C ₁₃ H ₁₆ O ₃ S (252.3) 140/0.01	Ber. 61. Gef. 61.	88 6.39 43 6.21	12.71 12.67	1670 ^{e)}	3.0-1.5 (m, 8H, CH ₂), 1.43 (verbreitertes s, 3H, CH ₃); Integrationsverhältnisse zeigen einen Gehalt von 11% 17b an
a) Temperatu hielten wir au werden bei 1	ar des Kugelrohrofens. – ^{b)} Alle S ufgrund der hohen Zersetzlichkeit 00°C/0.01 Torr abgezogen. – ^{e)}	pektren enthalten: 7.9 keine befriedigenden A Sehr schwach, vermut	(mc, 2H) un analysenwerte lich auf den	ld 7.6 (m e. – ^{d)} N Anteil vc	ic, 3H) für (licht destilli on 17b zurü	DSO ₂ C ₆ H ₅ . – ° erbar; alle flücht ckzuführen.) Trotz mehrfacher Destillation er- igen Bestandteile des Rohprodukts

Chem. Ber. 115 (1982)

Allgemeine Arbeitsvorschrift zur Darstellung der Nonafluorbutansulfonsäure-enolester 6c, 14c - 17c

10.0 mmol Trimethylsilyl-enolether **6a**, **14a** – **17a** und 20.0 mmol Nonafluorbutansulfonylfluorid (**4c**) werden unter Stickstoff bei 0 °C mit 1.3 mmol Tetra-*n*-butylammonium-fluorid (2.6 ml einer 0.5 M Lösung in THF) versetzt. Die resultierende blaßgelbe Lösung wird 16 h bei Raumtemp. gerührt. Das erhaltene Gemisch wird direkt im Wasserstrahlvak. fraktionierend destilliert. Ausbeuten finden sich im allgemeinen Teil (Schema 2).

(*1-tert-Butylvinyl*)-nonafluorbutansulfonat (6c): Sdp.²⁴) 100 °C/18 Torr. – ¹H-NMR (CDCl₃): $\delta = 5.09$ und 4.97 (2d, J = 4 Hz, je 1 H, = CH₂), 1.55 (s, 9H, C(CH₃)₃). – IR (CCl₄): 1655 cm⁻¹ (C = C).

C10H11F9O3S (382.3) Ber. C 31.42 H 2.90 S 8.39 Gef. C 30.75 H 2.94 S 9.19

(2-Methyl-1-propenyl)-nonafluorbutansulfonat (14c): Sdp. ²⁴) 130 °C/18 Torr. - ¹H-NMR (CDCl₃): $\delta = 6.43$ (mc, 1H, = CH), 1.8 (mc, 6H, = C(CH₃)₂). - IR (CCl₄): 1690 cm ⁻¹ (C = C).

C₈H₇F₉O₃S (354.2) Ber. C 27.13 H 1.99 S 9.05 Gef. C 27.45 H 1.84 S 9.35

(1-Cyclopenten-1-yl)-nonafluorbutansulfonat (15c): Sdp.²⁴⁾ 80°C/18 Torr (Lit.²⁵⁾ 70-75°C/20 Torr). - ¹H-NMR (CDCl₃): δ = 5.65 (mc, 1H, =CH), 2.9-1.6 (m, 6H, CH₂). - IR (CCl₄): 1660 cm⁻¹ (C=C).

(1-Cyclohexen-1-yl)-nonafluorbutansulfonat (16c): Sdp.²⁴⁾ 120°C/18 Torr (Lit.²⁵⁾ 80-84°C/20 Torr). - ¹H-NMR (CDCl₃): $\delta = 5.78$ (mc, 1H, =CH), 2.6-1.4 (m, 8H, CH₂). - IR (CCl₄): 1690 cm⁻¹ (C=C).

(6-Methyl-1-cyclohexen-1-yl)-nonafluorbutansulfonat (17c): Sdp.²⁴⁾ 150 °C/18 Torr. – ¹H-NMR (CDCl₃): $\delta = 5.72$ (mc, 1H, =CH), 2.75 – 1.25 (m, 7H, CH₂, CH), 1.07 (d, J = 6.5 Hz, 3H, CH₃). – IR (CCl₄): 1680 cm⁻¹ (C=C).

C11H11F9O3S (394.3) Ber. C 33.51 H 2.81 S 8.13 Gef. C 33.53 H 3.00 S 9.08

Synthese von (2-Methyl-1-propenyl)-methansulfonat (14d): 1.80 g (12.5 mmol) 14a und 0.68 g (10.0 mmol) Methansulfonylfluorid (4d) werden in 10 ml absol. THF mit 219 mg (1.30 mmol) Benzyltrimethylammonium-fluorid 16 h bei Raumtemp. gerührt. Nach Verdünnen mit 20 ml *n*-Pentan, Filtration, Einengen und Destillation bei 70 °C/0.01 Torr erhält man 0.98 g (65%) 14d als farbloses Öl. – ¹H-NMR (CDCl₃): $\delta = 6.20$ (mc, 1 H, = CH), 2.95 (s, 3 H, OSO₂CH₃), 1.65 (mc, 6H, = C(CH₃)₂). – IR (CCl₄): 1690 (C = C), 1380 und 1190 cm⁻¹ (SO₂). – MS (70 eV): *m/e* = 150 (14%, M⁺), 71 (29%, C₄H₇O⁺), 43 (100%, C₃H₇⁺).

C₅H₁₀O₃S (150.2) Ber. C 39.99 H 6.71 S 21.35 Gef. C 41.60 H 6.72 S 21.76

Trotz mehrfacher Destillation erhielten wir keine bessere C-Analyse.

 ¹⁾ ^{1a)} F. Muth, in Methoden der organischen Chemie (Houben-Weyl-Müller), 4. Aufl., Bd. 9, S. 310, Thieme, Stuttgart 1955. - ^{1b)} W. E. Truce, T. L. Klingler und W. W. Brand, in Organic Chemistry of Sulfur (S. Oae), S. 527, Plenum Press, New York/London 1977. - ^{1c)} W. E. Truce und G. D. Mading, Tetrahedron Lett. 1966, 3681. - ^{1d)} A. M. van Leusen, B. A. Reith, A. J. W. Iedema und I. Strating, Rec. Trav. Chim. Pays-Bas 91, 37 (1972).

²⁾ E. Hirsch, S. Hünig und H.-U. Reißig, Chem. Ber. 115, 399 (1982).

³⁾ Reaktionspartner für C-Sulfonylierung mit ArSO₂Cl: H. R. Henze und N. E. Artman, J. Org. Chem. 22, 1410 (1957).

⁴⁾ C-Sulfonylierung mit ArSO₂F: ^{4a)} G. Köbrich, Chem. Ber. **92**, 2982 (1959). - ^{4b)} H. Fukuda, F. J. Frank und W. E. Truce, J. Org. Chem. **28**, 1420 (1963); siehe auch Lit. ^{1b-d)}.

⁵⁾ Übersichten: P. D. Magnus, Tetrahedron **33**, 2019 (1977); B. M. Trost, Acc. Chem. Res. **11**, 453 (1978); B. M. Trost, Chem. Rev. **78**, 363 (1978).

⁶⁾ Übersicht: P. J. Stang, M. Hanack und L. R. Subramanian, Synthesis 1982, 85.

- 7) U.a. ist eine zweifache Sulfonylierung denkbar, vgl. Lit.^{4b)}.
- ⁸⁾ W. J. Le Noble und H. F. Morris, J. Org. Chem. 34, 1969 (1969); vgl. auch R. Gompper und H.-U. Wagner, Angew. Chem. 88, 389 (1976); Angew. Chem., Int. Ed. Engl. 15, 321 (1976), und dort zit. Lit.
- ⁹⁾ J. F. King und T. Mee-Ling Lee, Can. J. Chem. 59, 356 (1981); vgl. auch Lit.¹⁸⁾, Fußnote 26.
- ¹⁰⁾ Vgl. F. A. Cotton und G. Wilkinson, in Anorganische Chemie, 3. Aufl., S. 112, Verlag Chemie, Weinheim 1974.
- ¹¹⁾ ^{11a} R. A. Olofson und I. Cuomo, J. Org. Chem. 45, 2538 (1980). ^{11b} R. A. Olofson und I. Cuomo, Tetrahedron Lett. 21, 819 (1980). Vgl. auch Fluorid-katalysierte Benzolsulfony-lierung von Trimethylsilylethern: ^{11c} P. Ykman und H. K. Hall jr., J. Organomet. Chem. 116, 153 (1976). Fluorid-katalysierte Umsetzung von Perfluoralkansulfonylfluoriden mit Trimethylsilyl-aryl-ethern: ^{11d} H. Niederprüm, P. Voss und V. Beyl, Liebigs Ann. Chem. 1973, 20.
- ¹²⁾ Orientierende Versuche zeigen, daß sich die Methode mit Einschränkungen auch auf 2-(Trimethylsiloxy)-2-propennitrile¹³⁾ anwenden läßt. Aus der geplanten Dissertation H. Reichelt, Univ. Würzburg.
- ¹³⁾ U. Hertenstein, S. Hünig, H. Reichelt und R. Schaller, Chem. Ber. 115, 261 (1982).
- ¹⁴⁾ ^{14a} M. Foa, L. Cassar und M. T. Venturi, Tetrahedron Lett. **1968**, 1357. ^{14b} I. C. Sauer und I. D. C. Wilson, J. Am. Chem. Soc. **77**, 3793 (1955). – ^{14c} H. Hopff und H. Lussi, Helv. Chim. Acta **42**, 2742 (1959).
- ¹⁵⁾ P. J. Stang und W. Treptow, Synthesis 1980, 283.
- ¹⁶⁾ T. E. Dueber, P. J. Stang, W. D. Pfeifer, R. H. Summerville, M. A. Imhoff, P. v. R. Schleyer, K. Hummel, S. Bocher, C. E. Harding und M. Hanack, Angew. Chem. 82, 517 (1970); Angew. Chem., Int. Ed. Engl. 9, 521 (1970).
- 17) L. R. Subramanian, H. Bentz und M. Hanack, Synthesis 1973, 293.
- ¹⁸ P. J. Stang, M. G. Mangum, D. P. Fox und P. Haak, J. Am. Chem. Soc. 96, 4562 (1974).
- 19) Übersicht: E. Colvin, Silicon in Organic Synthesis, S. 198, Butterworth, London 1981.
- ²⁰⁾ F. Muth, in Methoden der organischen Chemie (Houben-Weyl-Müller), 4. Aufl., Bd. 9, S. 557, Thieme, Stuttgart 1955.
- ²¹⁾ Bayer AG, Leverkusen.
- ²²⁾ Neuere synthetische Anwendungen siehe: P. J. Stang und A. G. Anderson, Tetrahedron Lett.
 1977, 1485; J. E. McMurry und W. I. Scott, ebenda **1980**, 4313; V. B. Jigajinni und R. H. Wightman, ebenda **1982**, 117.
- 23) C. A. Brown, J. Org. Chem. 39, 3913 (1974).
- 24) Temperatur des Kugelrohrofens.
- ²⁵⁾ L. R. Subramanian und M. Hanack, Chem. Ber. 105, 1465 (1972).

[73/82]